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Measure theory and topology

• Commutative Von Neumann algebra  σ-finite 
measure space

• This motivates to define the non-commutative 
measure theory via general (non-commutative) 
von Neumann algebras

• Commutative C*-algebra  locally compact 
topological space

• This motivates to define the non-commutative 
topology via general (non-commutative) C*-
algebras
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Measure theory and topology
Topology Algebra

C0(X) C*-algebra A

proper map morphism

homeomorphism automorphism

measure positive functional

compact unital

σ-compact σ-unital

open subset ideal

open dense subset essential ideal

closed subset quotient

compactification unitization

C(αX) A~

C(βX) M(A)

… ...
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Differential Calculus
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Classical Quantum

Complex variable Operator in H

Real variable Selfadjoint operator in H

Infinitesimal Compact operator in H

Infinitesimal of order of α Compact operator in H whose 
characteristic values behave 
as μn=O(n-α) when n→∞

Differential of real or complex 
variable

df=i[F,f]

Integral of infinitesimal of 
order 1

Dixmier trace, Trω(T)



Geometry

Commutative case (reconstruction theorem, Connes 2008)
A spectral triple: (A,H,D), A is commutative and
i) μn(R(D))=O(n-1/p)
ii) [[D,a],b]=0  for any a,b2A
iii) For any a2A, a and [D,a] belong to Dom(δm) where δm(T)=

[|D|m,T] is a derivation
iv) Exists a Hochschild p-cycle c: πD(c)=1 for p odd or πD(c)=g –

Z2 grading for p even
v) A-module H∞=XDom(Dm) is finite and projective and the 

Hermitian structure (.|.) defined by <x,ah>=:$a(x|h)|D|-p

Then (A,H,D) is in one-to-one correspondence with smooth 
oriented compact manifold.
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Geometry
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A=C∞(M), H=L2(M,S), D=γμ(∂μ+ωμ)



Geometry

We take the generalized spectral triple (A,D,H) as

the definition of non-commutative geometry.
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Dirac operator

Geometry

Space-
time

Gauge

Matter 
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Examples. I – AC geometry and SM
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Usual geometry: 
A=C∞(M), H=L2(M,S), D=γμ(∂μ+ωμ); JM , gM

Finite (matrix) geometry: 
AF , HF , DF ; JF , gF

_________________________________________________________

Almost commutative (AC) geometry: 
MxF=(C∞(M,AF), H=L2(S5(MxHF)),
D51+ gM5DF; JM5JF, gM5gF )
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Take the finite (matrix) geometry as follows: 
AF =C4H4M3(C)
HF =( Hl 4 Hl* 4 Hq 4 Hq* )43

DF =‘Yukawa mass matrices’
JF =‘charge conjugation’
gF =left-handed particles are eigenvectors with +1, right-

handed with -1

Gauge fields come from the fluctuation of the full Dirac
operator: DA=D+JAJ-1 , where A=Saj[D, bj]

Then the spectral action                      produces the full

action of the Standard Model!
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Why do we “deform” geometry?

1) Problems with the quantization of gravity
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Why do we “deform” geometry?
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As the result, the effective dimensionless constant is given by
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Why do we “deform” geometry?
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i) (Super)string theory: contains a spin-2 massles mode => 
has to describe gravity. GR is recovered in long-wave 
regime. But, the predictive power is quite poor: the string 
theory landscape has 10500 vacua.
ii) Loop quantum gravity: one can perform non-
perturbative quantization. Among problems, the difficulty 
of the recovery quasiclassical space.
iii) Some other approaches treat gravity as an emergent 
phenomenon (e.g., entropic gravity).

Possible solutions



Why do we “deform” geometry?

2) General arguments that the notion of a space-
time as a classical manifold should be abandoned 
Doplicher, Fredenhagen and Roberts 1995
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Examples. II – Horava-Lifshits models

• Lifshitz model (Lifshitz 1941)
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I.e. we have two fixed points: UV, which corresponds to 
z=2 and has significantly improved behavior and IR, in 
which by the time rescaling we can set c=1 and restore 
relativistic invariance, z=1
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Why to break Lorentz invariance?

Let us consider the same type of the 
modification, but when the higher derivatives 
are added in the Lorentz invariant way. 
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ADM
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We take ADM slicing as fundamental, i.e. instead of 
considering just a manifold, we endow it with the 
foliation structure:

FDiffsor  diffeos preserving-foliation are These

)(
~~

  ),,(~~ ttttxxx ii 


Also, we introduce anisotropic scaling between x and t:
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ztxttxx
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• Projectable FDiff gravity (Horava 2009)

• Non-projectable FDiff gravity (Blas et al. 2010)
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Some properties

• Broken 4d diffeos => Lorentz violation

• Extra scalar mode in addition to two graviton 
polarizations

• In general the scalar mode does not decouple in IR, this 
can endanger the renormalizability

• The model with the detailed balance condition does 
not pass the Solar system tests

• The healthy extension (with ai) has A LOT of free 
parameters and some of them still require fine tuning

• …
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IR limit
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Keeping only the terms with lowest derivatives, we 

arrive at IR limit

This action is used to study the gravitational equations 

of motion (Barausse & Sotiriou 2013)
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Spectral dimension

(AP 2010)

• The choice of the Dirac operator in the form 
D=γμ(∂μ+ωμ) is not natural anymore

• The foliation structure dictates the following 
(schematic) form for D (for z=3)
D= ∂t+σμ∂μΔ+M*Δ+M*

2σμ∂μ

• This D should be used to obtain “physical” 
geometry instead of auxiliary 3+1 dimensional

(AP 2010, Gregory & AP 2012)

Strings at Dunes, Natal, 04-15 July 2016



Model calculation

• M=S1×T3 ,  D2=∂t
2+Δ3+M*

2Δ2+M*
4 Δ

• sp(D2)={n2+(n1
2+n2

2+n3
2)3+M*

2(n1
2+n2

2+n3
2)2

+M*
4(n1

2+n2
2+n3

2) , ni ϵ Z}

• N|D|(λ)={# eigenvalues < λ}

• when λ<<M*
6 the last term dominates:
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when λ>>M*
6 the first term dominates: 
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One can do better and go beyond the flat case.

• Define a generalized ζ-function

ζΔ(s) := Tr(∆-s)

• Now ∆ can be any generalized elliptic operator.

• ζ-function can be extended to a meromorphic function 
on the whole complex plane with the only poles given by
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Spectral Action

• Dirac operator is very complicated:

gravity? Lifshitz-Horava   
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 To calculate the trace of this operator one has to find the 
heat kernel
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Part I
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Even the flat case is not trivial (Mamiya & AP 2013)

 This allows to perform a completely analytical study of 
the spectral dimension flow:
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Part II  Matter

 DSmatter 

 The operator D is the same that was used for the gravity 
part!

 The matter coupling to geometry is restricted only by FPDiff.

 This permits inclusion of the higher spatial derivatives in Smatter

 There is no guiding principle on how to proceed except the 
control over the amount of Lorentz violation (Pospelov&Shang
2010, Kimpton&Padilla 2013)

 The spectral action approach has the second part 
(Chamsedinne&Connes 1996)
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• What happens to the geodesic motion?

motion geodesic    0  

T

(Dixon 1970, Hawking&Ellis 1973)

 Now we DO NOT have

Instead we do have

0 

T










g

S
TTh matt   where,0

 Alternative way to get geodesics:

 Write a field theory

 Find field equations

 Restrict to the 1-particle sector

 Do quasi-classical analysis

 Hamilton-Jacobi => geodesic motion
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 Immediate result is that “geodesics” change
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Applications: IR limit
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The most general FPDiff covariant generalized operator in IR 

limit takes the form (AP 2014)
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1
,

2

1
,1 54321  ccccc

To the Diff covariant case correspond the following values:
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i)Geodesic motion

• The approach based on Hamilton-Jacobi equation

or

• Calculating the spectral distance based on the 

deformed Dirac operator lead to the same result: 

The geodesic motion of a point test particle is the 

same as for a (pseudo)Riemannian manifold with 

the effective metric

 h
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nng
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ii) Spectral action (Lopes, Mamiya & AP 2015)

Using the heat kernel expansion for the deformed Dirac

operator 

one arrives at
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iii) Matter coupling (Lopes, Mamiya & AP 2015)

    DSmatter
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This should be compared with (Kostelecky 2004)
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Using our Dirac operator we can express the 
Lorentz violating parameters as some 
combinations of ci

This, in principle, could allow to put the bounds on 
the parameters of the gravity action that will be 
much more restricting that the ones coming from 
gravitational experiments.
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Conclusions/Discussions

• Horava-Lifshitz could provide a UV completion of GR

• For this the original proposal should be modified 
(“healthy” extension?)

• It would be good to have a more geometrical approach 
to construct the theory

• At least in IR, the geodesic motion is still in some 
effective commutative geometry

• The spectral action allows to calculate both, gravity and 
matter parts
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• A lot of fine tuning happens automatically due to the 
fact that both parts are defined by the same Dirac 
operator

• Bounds on LV parameters on the matter side could be 
used to bound the gravity action (and vice versa)

• Gauge sector, matter content (it is more natural now to 
have fields in reps of SO(3))

• Methods of spectral geometry plus spectral action 
principle have proven to be useful though we do 
expect much more complicated situation for the fully 
deformed theory
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