Effectiveness and naturalness of the
spectral action for theories on
foliated space-times



Measure theory and topology

Commutative Von Neumann algebra < o-finite
measure space

This motivates to define the non-commutative
measure theory via general (non-commutative)
von Neumann algebras

Commutative C*-algebra < locally compact
topological space

This motivates to define the non-commutative
topology via general (non-commutative) C*-
algebras



Measure theory and topology

Co(X) C*-algebra A
proper map morphism
homeomorphism automorphism
measure positive functional
compact unital
o-compact o-unital

open subset ideal

open dense subset essential ideal
closed subset quotient
compactification unitization
C(oX) A~

C(BXx) M(A)
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Differential Calculus

Complex variable
Real variable
Infinitesimal

Infinitesimal of order of o

Differential of real or complex
variable

Integral of infinitesimal of
order 1

Operator in A
Selfadjoint operator in A
Compact operator in &

Compact operator in & whose
characteristic values behave
as U,=@n*) when n—->ee

df=i[F.f]

Dixmier trace, Tr (T)
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Geometry

Commutative case (reconstruction theorem, Connes 2008)
A spectral triple: (A,#,D), A is commutative and

i) 1o (R(D))=O(nV/P)

i) [[(D,a],b]=0 foranyabe A

iii) For any a€ A, a and [D,a] belong to Dom(6™) where 6™(T)=
[[D|™, T] is a derivation

iv) Exists a Hochschild p-cycle c: it (c)=1 for p odd or it jc)=y —
Z, grading for p even

v) A-module #__=MNDom(D™) is finite and projective and the
Hermitian structure (.|.) defined by <£,an>=:fa(£|n)|CD|'P

Then (A,#,DD) is in one-to-one correspondence with smooth
oriented compact manifold.



Geometry

A=C=(M), #=L2(M,S), D=y*(d +w)

e d(x,y)=sup| f()f(y)|:f eC(M),[[D, f]|<1}
2" ()

* Np(B)—- " \/ol(M) A"
/1—)00 72-)
o Tr'(f|D|")= 2 4, jfvg, where TrA = fim Zn(A)
n(2z)" 2 N-= |og N

2
. Tr;(( j Nﬂz [12mg1 fojd4x\/§+m§ fzjd4x\/§R+

0

+ f J'd xf(——CﬂVPGC”VPG L —R* +ER ‘R” j+0(izﬂ

10 20 m



Geometry

We take the generalized spectral triple (A,D,H) as
the definition of non-commutative geometry.



Space-
time

Geometry

Gauge

Matter

Strings at Dunes, Natal, 04-15 July 2016



Examples. | = AC geometry and SM

Usual geometry:
A=C=(M), #H=LM,S), D=p*(3,+w,); Iy, Yu

Finite (matrix) geometry:
A He, DesJe, 7

Almost commutative (AC) geometry:
MxF=(C=(M, A;), #H=L*(S® (MxF.)),
D1+ @D Jy ®J, Y ® 7))



Take the finite (matrix) geometry as follows:

A =COH D M,(C)

He=(H, ® H® H, D HQ*)@?’

e ="Yukawa mass matrices’

J. ='charge conjugation’

7: =left-handed particles are eigenvectors with +1, right-
handed with -1

Gauge fields come from the fluctuation of the full Dirac
operator: D,=D+JAJ*, where A=2a/[D, b]]

2

D
Then the spectral action Tr;((—] produces the full

Mg

action of the Standard Model!



Why do we “deform” geometry?

1) Problems with the quantization of gravity

A]=¢6 In momentum units
D=d-(d/2-1)E—-no

D - superficia | degree of divergence

d - space - time dimension

E - numberf of the external legs

n - number of vertices

We can expect renormaliz ability only when 6 >0




Why do we “deform” geometry?

S, 16ﬂdo X\—gR => &6=[G]=2-d
ford=4,6=-2<0

As the result, the effective dimensionless constant is given by

2
GE’ = (i] where M, = e 1.22x10°GeV
M, \ G

l.e. when E << M )

SN




Why do we “deform” geometry?

Possible solutions

i) (Super)string theory: contains a spin-2 massles mode =>
has to describe gravity. GR is recovered in long-wave
regime. But, the predictive power is quite poor: the string
theory landscape has 10°°° vacua.

i) Loop quantum gravity: one can perform non-
perturbative quantization. Among problems, the difficulty
of the recovery quasiclassical space.

iii) Some other approaches treat gravity as an emergent
phenomenon (e.g., entropic gravity).



Why do we “deform” geometry?

2) General arguments that the notion of a space-
time as a classical manifold should be abandoned
Doplicher, Fredenhagen and Roberts 1995
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Examples. Il = Horava-Lifshits models

e Lifshitz model (Lifshitz 1941)

S = J'dtd”x(gé'2 +g(Ag)’ —C2¢A¢)
[X]=-1,[t]=-2,[c] =1
The propagator has the form :

1

G a),lz oC — _
(@) o’ —c’k? —gk”




|.e. we have two fixed points: UV, which corresponds to
z=2 and has significantly improved behavior and IR, in
which by the time rescaling we can set c=1 and restore

relativistic invariance, z=1



Why to break Lorentz invariance?

Let us consider the same type of the
modification, but when the higher derivatives
are added in the Lorentz invariant way.

S = [d*x(0, g0“p+9(0"0,,4)°)
The propagator takes the form :
1 1 1 1

G(w K — — =
@)k TP gkd) K KE_1/g




Nn| t

lz

ds? = g; (dx' + N'dt)(dx’ + Nidt) - (Ncdt)’
_ 1 3 i 2 3
Sen =1 | dd XN /g (K, KT —K?+R)

- (gi,. - VN, —VjNi) - second fundamenta | form

where K;; = —
2N



We take ADM slicing as fundamental, i.e. instead of
considering just a manifold, we endow it with the

foliation structure:
X'=X'(X,1), t =t (t)
These are foliation - preserving diffeos or FDIffs

Also, we introduce anisotropic scaling between x and t:

X—>aX,t—a't or [X]=-1, [t]=-2
This Is equivalent to prescribin g the following dimensions :
[c]=z-1, [N]=[g,]=0, [N,]=2-1=[G] =3~z



* Projectable FDiff gravity (Horava 2009)

N=N(@), NN
ot

S =M—§jd3xdt\@N(Kin” — K2 -V,

s =2A—R+M2(AR?+ AR R )+
+M*(B,RAR+B,R,R*R! +B,V,R, V'R¥+B,RR*R,, +B,R®)
* Non-projectable FDiff gravity (Blas et al. 2010)

N =N(X), a:=N"'V.N

M 2 .
S =7de3xdt\@N(Kin” —JK?-V,,)
Ve =Vp —0a;a’ + M*_Z(ClaiAai +C,(aa')’ +C3aiajR” )+
+ M*_4(D1aiA2ai +D,(aa')’ + D;aa“aa; R’ )
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Some properties

Broken 4d diffeos => Lorentz violation

Extra scalar mode in addition to two graviton
polarizations

In general the scalar mode does not decouple in IR, this
can endanger the renormalizability

The model with the detailed balance condition does
not pass the Solar system tests

The healthy extension (with a;) has A LOT of free
parameters and some of them still require fine tuning



IR limit

Keeping only the terms with lowest derivatives, we
arrive at IR limit

N =N(t%), a:=N7VN
S _Me d3xdt\fN(—K K"+ IK? +caa' +EPR+ A )
R~ j 9 ij aa; G C

This action iIs used to study the gravitational equations
of motion (Barausse & Sotiriou 2013)



Spectral dimension

(AP 2010)

* The choice of the Dirac operator in the form
D=y*(0,+w,) 1s not natural anymore

* The foliation structure dictates the following
(schematic) form for D (for z=3)
D= 6+0"0,4+M.A+M.260,,

* This D should be used to obtain “physical”
geometry instead of auxiliary 3+1 dimensional

(AP 2010, Gregory & AP 2012)



Model calculation

M=S1xT3, D?=92+A3+M.2A2+M.* 4
sp(D2)={n?+(n,?+n,2+n52)"M.2(n,*+ny*+n5%)?
+M.A(n " +ny2+ng%) , nje Z}

Nip/(4)={# eigenvalues < 1}

when 1<<M.b the last term dominates:

(ﬂZ_nZ)l/Z

A
Np ()= [dn  [4zpfdpoec 2 = d=4
0 0

when A>>M.5 the first term dominates:

1 (12_n2)1/6

N|D|(,1);jdn J47zp2dpocﬂ,2 — d=2
0 0



One can do better and go beyond the flat case.
* Define a generalized (-function
25(s) = Tr(A)
* Now A can be any generalized elliptic operator.

e (-function can be extended to a meromorphic function
on the whole complex plane with the only poles given by

n—-p+zp n—p+zp-1 n-—-p+zp-—K

21 217 217
e The first pole is related to the analytic dimension
n-p+zp n,
2z 2

D
e n=D+1, p=1 (co-dimension) we have n, =1+—

Z



Spectral Action

2

D
Part | Tr;{—z
m

0

) = Horava - Lifshitz gravity?

* Dirac operator is very complicated:
D?’=A_+1f(A)),

where A_ = ——6 (‘@a ] and A, =
N.g ° N\f

e To calculate the trace of this operator one has to find the
heat kernel

5,(Nag"a, )

(6, +D*)K(x,x";8) =0
K(x,x";+0) =0(x, X")



Even the flat case is not trivial (Mamiya & AP 2013)

i (t—t'y2 oo z—1 e ViR
Ii[:;ll—;l:f;'r} = 11rl_3f_2‘|e_ ir E (H %_ (-r-\ ) 2o kir/z 5
_;:(47?}2'7—5'\ ) {h-”‘]._lj Iib 0 :

] _ . .’f—f*g
w10, [((3/2—&1;%)/:11/:); (3/2,1 )—J[ZH—]L'] .

e This allows to perform a completely analytical study of
the spectral dimension flow:

3 _k k
ds =1+ —+277. "7 1= (1——)

—————————————————————————
3.8+
3.6
344
3.24

281
2.6+

T T T T 1
0 2 4 6 8 10
2

£
ThT

FIG. 1. The example of a smooth transition from the UV to IR regime for z=3 and k= 1.
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Part || Matter

* The matter coupling to geometry is restricted only by FPDiff.
e This permits inclusion of the higher spatial derivatives in S

matter

e There is no guiding principle on how to proceed except the
control over the amount of Lorentz violation (Pospelov&Shang
2010, Kimpton&Padilla 2013)

* The spectral action approach has the second part
(Chamsedinne&Connes 1996)

S matter °© <W‘D‘W>

e The operator D is the same that was used for the gravity
part!
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 What happens to the geodesic motion?
vV, T7"=0 = geodesic motion
(Dixon 1970, Hawking&Ellis 1973)

e Now we DONOT have VT =0

oS
Instead we do have  h, 'V T“" =0, where T*" oc

matt

y72%
e Alternative way to get geodesics:

e Write a field theory

e Find field equations

e Restrict to the 1-particle sector

* Do quasi-classical analysis

* Hamilton-Jacobi => geodesic motion




2.2
S — /ﬁ\/_( CA VIS v Sl qﬁg)

h2
2 2
m-c
Lo — =0
T ﬁg ,
b = Aei®

2‘?“44\7”’5 + flljs — '[] = v“(}r}v”s} _ U
V,.SV~S + m?c® = h204

H = g“”’pﬁpy + m2e?

at = 2N (1 )g“”p,,,
u)«

{ 9" pup, +m?c* =0
p,ut \‘( ) o PrPA

A2+ L dz¥ dz?
dr? vAdr dr

= (0. 7 is a proper time

* Immediate result is that “geodesics” change
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Applications: IR limit

S g = MTFZ’jd?’xdt\@N (K K+ K2 +aaal +ECR+ A )
The most general FPDIff covariant generalized operator in IR
limit takes the form (AP 2014)

D=4°D, +¢,®D+c,7’K+c,y%a, +¢,K +c.7°y"a,
To the Diff covariant case correspond the following values:

1 1
> _5,04:05:0

o
1
r
O

N
1
|
|
O
w
|



i)Geodesic motion

* The approach based on Hamilton-Jacobi equation
or

 Calculating the spectral distance based on the
deformed Dirac operator lead to the same result:
The geodesic motion of a point test particle is the
same as for a (pseudo)Riemannian manifold with

the effective metric

~ 1

g, =-nn, +—2hw
Cl



ii) Spectral action (Lopes, Mamiya & AP 2015)

Using the heat kernel expansion for the deformed Dirac
operator D=y"D,+¢,®D+c,y°K+cp%a, +¢,K+cp°y%a,
one arrives at

M 2 ! .
S =—2" [d3dtvhN(- K. KT+ AK? +ga.a' +EPR+ A
IR 2 1] [ C
where
M 2 1\ Tr1 12 f A2
TP: fz(MJ > E=.Jc,, A=1-36c%, a=12c% A, = fz
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iii) Matter coupling (Lopes, Mamiya & AP 2015)

S matter & <W‘D‘W> =>
S, e = jdtdsx\mN y7(7/ODn +¢,9D+c,y K +

037/aa‘a +C4K +C57/07/aaa)>y
This should be compared with (Kostelecky 2004)

S,y :jd“x\@ (eg‘QFFaDﬂwﬂ?Mz//), where

- ~ ~ .~ 1 -
I*=y%-C, ey’ —d, e ely’y° —€ e —if ey° - J,,e°e elc"™

: ~ ~ 1~
M =m+im.y° -l—aﬂeg’yb +bﬂeg’7/57/b +E H, e‘elc®

uva
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Using our Dirac operator we can express the
Lorentz violating parameters as some
combinations of c;

Cpuar :.'f'l | J g , I ({E—]— - -.f_} K . {;-‘.': l]) m,lﬂ} , 1M %w"ﬁh’ . Hia ,IP—;r':

This, in principle, could allow to put the bounds on
the parameters of the gravity action that will be
much more restricting that the ones coming from
gravitational experiments.

Gravitatio nal | #|<107

Here f= g1
LV matter | f<10™ S



Conclusions/Discussions

Horava-Lifshitz could provide a UV completion of GR

For this the original proposal should be modified
(“healthy” extension?)

It would be good to have a more geometrical approach
to construct the theory

At least in IR, the geodesic motion is still in some
effective commutative geometry

The spectral action allows to calculate both, gravity and
matter parts



A lot of fine tuning happens automatically due to the
fact that both parts are defined by the same Dirac
operator

Bounds on LV parameters on the matter side could be
used to bound the gravity action (and vice versa)

Gauge sector, matter content (it is more natural now to
have fields in reps of SO(3))

Methods of spectral geometry plus spectral action
principle have proven to be useful though we do

expect much more complicated situation for the fully
deformed theory



